SUGATA CHATTERJEE,* E. K. S. VIJAYAKUMAR, CHRISTOPHER M. M. FRANCO, JURGEN BLUMBACH[†] and BIMAL N. GANGULI^{††}

Microbiology Department, Research Centre, Hoechst India Limited, Mulund (W), Bombay 400 080, India

H.-W. FEHLHABER and H. KOGLER*

Pharmasynthese, Hoechst AG, 6230 Frankfurt (M)-80, Germany

(Received for publication November 30, 1992)

We have recently reported the taxonomy, production, isolation and biological properties of a new antibacterial antibiotic alisamycin (1) by the fermentation of *Streptomyces actuosus* (culture number HIL Y-88,31582)¹⁾. In this communication we report the structure elucidation of alisamycin which is a new member of the manumycin group of antibiotics.

The physico-chemical properties of alisamycin (1) are shown in Table 1. High resolution FAB mass spectrometry of alisamycin (1) showed an $(M + H)^+$ ion of mass 521.2276 which corresponded to a formula of $C_{29}H_{33}N_2O_7$. This indicated a molecular formula of $C_{29}H_{32}N_2O_7$ for alisamycin (1) and an unsaturation number of fifteen. Two UV absorption maxima at 276 and 315 nm (MeOH) indicated

extended unsaturation. Although alkaline pH had only a marginal effect on the UV spectrum, acidification shifted the maxima at 315 nm to 325 nm and increased the absorption intensities at both the wavelengths by about 14%, indicating a keto-enol tautomeric system²⁾. IR frequencies at 3400, 1710 and 1670 cm^{-1} indicated hydroxyl, carbonyl and amide groups and a broad band at 1610 cm^{-1} indicated a polyene moiety.

Table 2 summarizes the ¹H and ¹³C NMR spectra of alisamycin (1). The proton resonances were analyzed by double quantum filtered HH shiftcorrelated COSY spectrum and the carbon re-

Table 1.	Physico-chemical	properties of	of al	lisamycin (1).

Appearance Yellow crystalline solid	
MP $> 250^{\circ}C$ (dec.)	
Solubility CHCl ₃ , EtOAc, CH ₃ OH, I	OMSO
$[\alpha]_{578}$ -122° (c 0.1, CHCl ₃)	
FAB-MS (m/z) 521 $(M+H)^+$	
HRFAB-MS (m/z)	
Found: $521.2276 (M+H)^+$	
Calcd: 521.2288 for C ₂₉ H ₃₃ N ₂ O ₇	
Molecular formula $C_{29}H_{32}N_2O_7$	
UV (MeOH) nm 278, 315	
275, 308 (alkali)	
278, 325 (acid)	
IR (KBr) cm^{-1} 3400, 3300, 2930, 2860, 17	10,
1670, 1610 (broad), 1520), 1370,
1325, 1280, 1255, 1210, 1	1175,
1160, 1125, 1100, 1000, 5	885,
810, 740, 660	
HPLC Rt $3.5 \text{ minutes } (4 \times (30 + 250))$	mm
ODS-Hypersil 10 μ colur	mn;
CH ₃ CN - H ₂ O containin	g 0.1%
TFA; 1 ml/minute; UV 2	220 nm.)

[†] Present address: Pharmaceutical Research, Hoechst AG, 6230 Frankfurt (M)-80, Germany.

^{††} Departmental Head.

		¹ H			
Position	$\delta_{c}{}^{b}$	δΗΝ		MBC partner	
		(multiplicity, J in Hz)	$^{2}J_{\mathrm{CH}}$	³ J _{CH}	
1	188.63				
2	128.08				
3	126.36	7.40 (d, 2.6)	C-2	C-1	
4	71.20				
5	57.41	3.70 (dd, 2.6, 3.6)	C-4	C-7	
6	52.93	3.65 (d, 3.6)	C-1, C-5	C-2	
7	136.29	5.86 (dd, 14.5, 0.3)		C-3, C-9	
8	131.58	6.58 (dd, 11.3, 14.5)			
9	139.52	6.58 (dd, 14.8, 11.3)			
10	131.74	6.42 (ddd, 11.2, 14.8, 0.3)			
11	143.45	7.32 (dd, 11.2, 14.7)		C-13	
12	121.59	6.05 (d, 14.7)	C-13	C-10	
13	165.48	—			
1′	165.16				
2'	120.95	5.84 (d, 14.8)	C-1′		
3'	144.16	7.22 (ddm, 14.8, 10.5)			
4′	125.52	6.12 (dd, 10.5, 15.5)	C-3′		
5'	150.76	6.12 (m)		C-3'	
6'	41.13	2.10 (m)			
7',11'	32.25	1.76 (m) (eq),			
		1.13 (m) (ax)			
8',10'	25.80	1.73 (m) (eq),			
		1.28 (m) (ax)			
9′	26.00	1.67 (m) (eq),			
		1.18 (m) (ax)			
1″	197.39	_			
2″	115.01	_			
3″	174.15	_			
4″	32.14	2.61 (m)			
5″	25.65	2.53 (m)			
3″-OH	—	13.52 (s)			
4-OH		3.25 (s)			
2-NH		7.54 (s)	C-1'	C-1, C-3	
13-NH	_	7.58 (s)	C-13	C-3″	

Table 2. ¹³C (67.5 MHz) and ¹H NMR (400 MHz) spectral data of alisamycin (1) (CDCl₃, 303°K)^a.

^a The ¹H and ¹³C chemical shifts are in ppm from (CH₃)₄Si and CDCl₃ as internal standards respectively.

^b The carbon multiplicities were determined by DEPT-135 experiment.

sonances were assigned by a proton-detected CH shift-correlated multiple quantum coherence (HMQC) NMR experiment. The spectral properties showed strong similarities to those reported for the manumycin group of antibiotics. From the COSY spectrum recorded in CDCl₃, four spin systems could be extracted, a conjugated diene moiety attached to a methine multiplet (H-6', $\delta 2.10$) being part of a cyclohexane unit, one isolated triene moiety, three signals from the 5-epoxy-cyclohex-2-enone and two strongly coupled signals representing four protons. In CDCl₃ alisamycin (1) also revealed

the presence of four D_2O exchangeable singlets at $\delta 13.52$, 7.58, 7.54 and 3.25 corresponding to one enolic hydroxyl, two amides and a hydroxyl proton respectively. On addition of DMSO- d_6 as co-solvent, the first three signals underwent large downfield shifts to $\delta 14.00$, 9.60 and 8.45 respectively and the fourth one was not observed. The amide singlet at $\delta 7.54$ showed COSY correlation to H-2' ($\delta 5.84$) and also to the H-3 ($\delta 7.40$) which in turn showed coupling (J=2.6 Hz) to the epoxy proton H-5. All these observations were suggestive of a carboxamide group linking the diene unit to the epoxycyclo-

hexenone. A full confirmation was obtained by a proton-detected long-range CH shift correlation (HMBC) NMR experiment (Table 2). Thus this amide proton showed ${}^{3}J_{CH}$ correlation to C-3 (δ 126.36), C-1 (δ 188.63); ${}^{2}J_{CH}$ correlation to C-1' (δ 165.16), and could thereby be assigned to the 2-NH proton.

The more downfield amide proton showed an exchange cross peak with the enolic proton in the NOESY spectrum and it also showed long-range COSY correlation with the H-11 proton (δ 7.32). In the HMBC spectrum this NH proton exhibited ${}^{3}J_{CH}$ correlation to the C-3" (δ 174.15) and ${}^{2}J_{CH}$ interaction to the C-13 (δ 165.48) carbonyl, the latter in turn showing ${}^{2}J_{CH}$ interaction with H-12 (δ 6.05). Thus it became manifest that the conjugated triene and the cyclopentenone unit were linked by a carboxamide group. A ${}^{2}J_{CH}$ coupling of the triene terminus H-7 to C-4 ($\delta_{\rm H}/\delta_{\rm C}$ 5.86/71.20) established the point of attachment of the triene unit to C-4[†]. An observed NOE interaction between the H-7 and H-5 lent further support to this attachment and was suggestive of proximal orientation of the trans- Δ^7 bond to the epoxy unit in the most preferred conformation. The absolute configuration at C-4 was not established.

The double bond geometries were determined by coupling constant measurements as well as NOE studies. Large coupling constant values $(14 \sim 15 \text{ Hz})$ observed for H-12 and H-2' established Econfiguration of the corresponding double bonds. The olefinic protons H-8/H-9 and H-4'/H-5' were isochronous appearing at $\delta 6.58$ and 6.12 respectively, and their coupling constant values could not be measured by simple analysis of the ¹H NMR spectrum. The problem of strong coupling could be resolved by simulating all the olefinic signals with the LAOCOON program and the best fitting values were taken. These values confirmed E-configuration for all the five disubstituted double bonds of alisamycin (1). Most of the olefinic protons also exhibited long range couplings (Table 2). The E-configurations of the double bonds were further corroborated by the NOE network (Fig. 1) as revealed in a phase-sensitive 2D NOESY spectrum $(300 \text{ MHz}, \text{CDCl}_3 - \text{DMSO-} d_6, 500 \text{ ms mixing time})$ with 4% random variation).

The number of double bonds in the individual side chains of alisamycin (1) was unequivocally established by chemical degradation. Thus, a mild alkaline hydrolysis following the procedure reFig. 1. NOE network of alisamycin (1).

ported³⁾ for manumycin afforded a dienic acid (2) which was converted to its methyl ester (3) and subsequently identified by spectral analysis to be 5-cyclohexyl-pent-2E, 4E-dienylcarboxylic acid (2). These findings established a dienic upper side chain. Finally any ambiguity in the structure assignment of the terminal cycloalkyl substituent (i.e. cyclohexyl vs. methylcyclopentyl) was ruled out by HNO3 oxidation⁴⁾ of alisamycin (1). The resulting acid on methylation afforded methylcyclohexanecarboxylate (4) which was found identical with an authentic sample by GC-MS analysis. The occurrence of a cyclohexyl residue is in agreement with the biosynthetic pathways proposed for this class of antibiotics⁵⁾. In the case of asukamycin in particular, which has a 7-cyclohexyl-hept-2E,4E,6E-trienoyl mojety as the upper side chain, the starter unit is reported to be a cyclohexyl-carbonyl-CoA, derived from the shikimate pathway, with chain extension by three molecules of malonyl-CoA. By direct analogy, it can be suggested that the biogenesis of the upper side chain of alisamycin (1) involves a starter unit of the shikimate derived cyclohexylcarbonyl-CoA, with chain extension by two malonyl-CoA molecules.

Acknowledgments

We thank Dr. P. K. INAMDAR for elemental analysis and recording some of the spectra and Dr. G. SUBBAIAH for the GC-MS analysis. The technical assitance of Mr. RAJKUMAR MAURYA is acknowledged.

References

1) FRANCO, C. M. M.; R. MAURYA, E. K. S.

[†] A ${}^{3}J_{CH}$ coupling of the 4-OH proton to the epoxy carbon C-5 was observed.

VIJAYAKUMAR, S. CHATTERJEE, J. BLUMBACH & B. N. GANGULI: Alisamycin, a new antibitoic of the manumycin group. I. Taxonomy, production, isolation and biological activity. J. Antibiotics 44: 1289~1293, 1991

- BRODASKY, T. F.; D. W. STROMAN, A. DIETZ & S. MIZSAK: U-56,407, a new antibiotic related to asukamycin: Isolation and characterization. J. Antibiotics 36: 950~956, 1983
- ZEECK, A.; K. SCHRÖDER, K. FROBEL, R. GROTE & R. THIERICKE: The structure of manumycin. I. Characterization, structure elucidation and biological

properties. J. Antibiotics 40: 1530~1540, 1987

- 4) KAKINUMA, K.; N. IKEKAWA, A. NAKAGAWA & S. OMURA: The structure of asukamycin, a possible shunt metabolite from 3-dehydroquinic acid in the shikimate pathway. J. Am. Chem. Soc. 101: 3402~3404, 1979
- 5) THIERICKE, R.; A. ZEECK, A. NAKAGAWA, S. OMURA, R. E. HERROLD, S. T. S. WU, J. M. BEALE & H. G. GLOSS: Biosynthesis of the manumycin group antibiotics. J. Am. Chem. Soc. 112: 3979~3987, 1990